犯罪现场调查通常发生在复杂的环境中,在复杂的环境中,可能会隐藏,遮挡或分散在混乱的背景中。传统的对象检测方法经常面临此类挑战,导致错过或不准确地识别关键的法医元素。本研究提出了一个自适应深度学习框架,旨在在复杂的犯罪现场中精确的对象检测。通过利用高级卷积神经网络(CNN),基于区域的CNN(R-CNN)和注意机制,提出的模型动态适应了不同的犯罪现场条件,无论大小,方向或遮挡,都可以有效地识别对象。框架集成了多尺度特征提取,上下文感知学习和自适应学习率,以提高准确性和鲁棒性。将Yolov8和掩码R-CNN合并用于实时检测和实例分段,该系统可确保对象定位和分类的高精度。对各种犯罪现场数据集进行了广泛的测试,证明了该模型的出色表现,平均平均精度(MAP)为92.5%,同时显着降低了误报和负面因素。这种适应性方法不仅简化了法医研究,而且还可以最大程度地减少人为错误,为执法机构提供了可靠,有效的工具。未来的研究将着重于将系统的功能扩展到3D犯罪现场重建和跨域法医分析。
主要关键词