摘要 - 社交媒体中的人们传播了许多信息,以更新其状态并与他人分享关键新闻。但是,这些平台中的大多数并未迅速验证个人或其帖子,人们无法手动识别假新闻。因此,需要一个能够检测假新闻的自动化系统。这项研究提出了使用四种机器学习算法构建模型。实验中采用的数据集是两个数据集的综合,其中包含几乎相等数量的有关政治的真实和虚假新闻文章。预处理阶段首先要通过删除标点符号,令牌化,特殊字符,白色空间,冗余单词消除,数字和英文字母,然后启动并停止数据离散化。然后,我们分析了收集到的数据,其中80%的数据最初用于训练每个模型。之后,应用四种明显的分类算法。使用新闻文章中的虚假新闻,诸如逻辑回归,决策树,随机森林和梯度提升分类器之类的方法。使用其余20%的数据评估了受过训练的分类器的精度。结果表明,决策树模型的最佳精度为99.60%,梯度提升为99.55%。此外,随机森林显示99.10%,逻辑回归98.99%。此外,我们还探索了根据混乱矩阵的结果获得最高精度,回忆,F1得分的最佳模型。索引术语 - 社会媒体,虚假新闻检测,机器学习,分类器,逻辑回归,决策树,随机森林,梯度提升。
主要关键词