采矿论点是一个自动自然语言处理(TALN)和计算机论证模型的全面扩展领域,旨在在自然语言中自动识别文本资源中的论证结构(即组成部分和关系)。在媒体领域,通过提供自动检测论点结构以根据证据支持医学的方法,被证明是有益的。这些方法的重要性是基于以下事实:尽管神经模型在医学诊断预测中的准确性,但其结果的解释仍然有问题。本文解决了这个开放的问题,并着重于对自然语言中的论证解释的生成和评估,以帮助医学诊断预测,以帮助临床医生进行决策和教育。首先,我提出了一条新的完整管道,以根据医学本体论和从检查文本中检测到的医学本体论和临床实体进行自然考试(MCQ)医学的永久解释(MCQ)医学。我定义了对医疗指定实体(NERC)的认可和分类的艺术状态,以检测患者表达的症状以及我根据ONTTO-LOGIE的条款对医疗措施进行的,以证明提供给医学生提供的临床病例的诊断。关键字:自动自然语言处理,提取论证结构,解释性论点。管道称为SYMEXP,允许我们的系统基于模板以自然语言生成安排解释,以证明正确的答案是正确的,以及为什么提出的其他选项不正确。其次,我提出了一个框架,用于评估基于论证的解释,称为Abexa,以自动提取医学MCQ的论证结构,并突出显示一组可自定义的标准,以表征临床解释和文档的论点。abexa通过在自动论证图上定义一组模式来解决从论点的角度评估解释的问题。非常彻底,我为解毒剂软件的持续设计和开发做出了贡献,该软件提供了不同的解释性人工智能模块,这些模块由医学争论。我们的系统提供了以下功能:用于医学领域的多语言论证分析,临床诊断的解释,提取和生成,医学领域的多语言语言模型以及医学MCQ的第一个多语言基准。总而言之,在本文中,我探讨了人工智能与论证理论结合如何导致更透明的健康和卫生系统。,我们通过在医学支持方面展示其所有潜力,例如医学生,将结果应用于关键的医学领域。
主要关键词