Loading...
机构名称:
¥ 1.0

在NISQ时代,量子算法仅限于宽度和深度降低的电路。混合经典量子算法,例如变分量子算法(VQAS),旨在通过反复运行浅参数化电路来解决深度瓶颈问题。但是,可用QPU中的QPU和古典计算机中的内存数量仍然限制了VQAS的适用性。为了构建高性能量子计算环境,我们将HPC技术与门切割相结合以增强可扩展性。以这种方式,我们可以依次执行量子电路较少的量子电路的一部分,或在单独的计算机中并行执行。在这里,我们仅使用适用于玩具模型和VQA的准概率分解来模拟仅使用局部门模拟两倍的门。此方法引入了所需执行次数的开销,但对于低深度量子电路,例如变化量子eigensolver(VQE)电路可能是合理的。我们探讨了在VQE问题中切割门的潜力,首先是减少噪声对基态能量的影响,其次是仿真资源。

通过切割增强量子电路的可伸缩性

通过切割增强量子电路的可伸缩性PDF文件第1页

相关文件推荐