Loading...
机构名称:
¥ 1.0

摘要 - Quantum Computing有潜力为许多重要应用程序提供有关经典计算的启用。但是,当今的量子计算机处于早期阶段,硬件质量问题阻碍了程序执行的规模。因此,在经典计算机上对量子电路的基准测试和模拟对于促进量子计算机和程序如何运行的理解至关重要,从而使两种算法发现都可以导致高影响量子计算和工程改进,从而传递到更强大的量子系统。不幸的是,量子信息的性质会导致模拟复杂性随问题大小而成倍扩展。在本文中,我们首次亮相Super.Tech的Supersim框架,这是一种用于高功效和可扩展量子电路模拟的新方法。Supersim采用了两种关键技术来加速量子电路模拟:基于Clifford的模拟和切割。通过在较大的非克利福德电路中隔离Clifford子电路片段,可以调用资源良好的Clifford模拟,从而导致运行时的显着减少。独立执行片段后,电路切割和重组程序允许从片段执行结果重建原始电路的最终输出。通过这两种最先进的技术组合,SuperSim是量子实践者的产品,允许量子电路评估超出当前模拟器的前沿。我们的结果表明,基于Clifford的电路切割会加速近距离电路的模拟,从而可以使用适度的运行时间评估100 Qubits。

基于Clifford的量子模拟电路切割

基于Clifford的量子模拟电路切割PDF文件第1页

基于Clifford的量子模拟电路切割PDF文件第2页

基于Clifford的量子模拟电路切割PDF文件第3页

基于Clifford的量子模拟电路切割PDF文件第4页

基于Clifford的量子模拟电路切割PDF文件第5页

相关文件推荐

2021 年
¥2.0
2020 年
¥1.0
2023 年
¥6.0
2025 年
¥1.0
2021 年
¥1.0
2023 年
¥28.0
2022 年
¥1.0
2021 年
¥1.0
2023 年
¥5.0
2020 年
¥4.0
1900 年
¥1.0
2024 年
¥1.0
2024 年
¥4.0
2024 年
¥28.0
2025 年
¥1.0
2020 年
¥1.0
2020 年
¥8.0
1900 年
¥1.0
2022 年
¥2.0