摘要。对肿瘤分割模型的一个关键挑战是适应各种临床环境的能力,尤其是在应用于质量差的神经数据时。围绕这种适应性的不确定性源于缺乏代表性数据集,使最佳模型在整个撒哈拉以南非洲(SSA)中发现的MRI数据中发现的不符合外表的模型没有展示的模型。我们复制了一个框架,该框架确保了2022个小子中的第二位置,以调查数据集组成对Mod-el绩效的影响,并通过使用以下方式培训模型来追求四种不同的方法:仅Brats-Africa Data(Train_ssa,N = 60),N = 60),2)Brats-Adult Glioma DATATS(2)BRATS-ADULT GLIOMA DATATS(TRAIT_ DATAT)(Train_gli,N = 1251) n = 1311)和4)通过进一步培训使用BRATS-AFRICA数据(Train_FTSSA)的Train_GLI模型。值得注意的是,仅在较小的低质量数据集(Train_SSA)上进行培训就产生了低于标准的结果,并且仅在较大的高质量数据集(Train_Gli)上训练,在低质量验证集中努力努力划定Odematous Tissue。最有希望的AP-PRACH(TRAIN_FTSSA)涉及预先培训高质量神经图像的模型,然后在较小的低质量数据集中进行微调。这种方法超过了其他方法,在Miccai Brats非洲全球挑战外部测试阶段排名第二。这些发现强调了较大的样品大小的重要性,并在改善分割性能中广泛接触了数据。此外,我们证明了通过在本地使用更广泛的数据范围对这些模型进行微调来改善此类模型的潜力。
主要关键词