Loading...
机构名称:
¥ 14.0

在不到四十年的时间里,纳米孔测序技术从笔记本页面上的一个令人难以置信的思想到了人类基因组完整顺序的决定性贡献者之一。它的快速发展,尤其是近年来,不仅是由于其对纳米孔的固有创新而驱动的,而且还取决于综合领域的协同进步,例如GPU加速和深层神经网络,以及深层的跨学科影响,例如诸如语音识别之类的领域。然而,在这种快速的进步中,纳米孔测序中的某些方法仍然相对尚未探索。这种疏忽有可能在技术进一步的发展中创造瓶颈。在本文工作中,我们深入研究了这些未知的领域,试图填补关键的空白并将技术分为新的边界。我们的目标是释放其潜力,从而在基因组研究及其他方面取得进一步的突破。通过我们的研究,我们开发了两种新型算法和两个量身定制的新颖模型,以解决纳米孔测序的这些不足的方面。属于MBS组的两种算法,GMB和LFB都为HHMMS固有的具有挑战性的解码问题提供了创新的解决方案。它们是针对不同场景量身定制的两个不同变体。虽然GMBS专门用于解码冗长的序列(例如在长阅读的基本词中遇到的序列),但LFBS已优化用于并行编程,并在处理短长度的sepciences方面表现出色。在这项研究中开发的两个创新模型,每种利用HHMM的变化并采用端到端方法,展示了分辨的结构。第一个模型是EDHMM和DNN的混合体,显示了整合知识驱动和数据驱动技术的有效性。相比之下,第二个模型是一种定制设计的解旋酶HMM,它从测序设备中发现的运动蛋白的开创性研究中汲取了灵感。凭借其精心制作的层次结构架构具有超过500万个排放状态,该模型提供了与其前身相当的全面功能空间。

纳米孔DNA测序中的算法和模型

纳米孔DNA测序中的算法和模型PDF文件第1页

纳米孔DNA测序中的算法和模型PDF文件第2页

纳米孔DNA测序中的算法和模型PDF文件第3页

纳米孔DNA测序中的算法和模型PDF文件第4页

纳米孔DNA测序中的算法和模型PDF文件第5页