Koopman框架通过通常无限的全球线性嵌入来提出有限维非线性系统的线性表示。最初,Koopman形式主义是为自主系统得出的。在具有输入的系统应用程序中,通常假定了Koopman模型的线性时间不变(LTI)形式,因为它有助于使用控制技术,例如线性二次调节和模型预测控制。但是,可以很容易地表明,此假设不足以捕获基础非线性系统的动力学。对具有线性或控制仿射输入的启动的连续时间系统的适当理论扩展才开始制定,但是尚未开发到离散时间系统和一般连续时间系统的扩展。在本文中,我们在连续和离散的时间内系统地调查并分析了在输入中提出的表格。我们证明,所产生的提升表示形式在状态转换是线性的情况下给出了库普曼模型,但是输入矩阵依赖于状态依赖性(在离散时间中的状态和输入依赖于状态和输入依赖性),从而产生了特殊结构的线性参数 - 变化(LPV)的描述。我们还提供了有关输入矩阵的依赖性对产生表示形式的贡献以及系统行为的依赖程度的误差界限。©2024作者。由Elsevier Ltd.引入的理论洞察力极大地有助于使用Koopman模型在系统识别中执行适当的模型结构选择,并为通过Koopman方法控制非线性系统的LTI或LPV技术做出适当的选择。这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
主要关键词