Loading...
机构名称:
¥ 3.0

通过替换h = 6.626 x 10 -34 js,c = 3 x10 8 ms -2和λmax= 0.7 x 10 -6 m e g(min)= 2.84 x 10 -19 j(or)1.8 eV的结果表明,所有可见光都被那些具有频带隙能量的半径差异少于1.8 ev所吸收的。因此,这些半导体是不透明的。在外部半导体中,受体和供体杂质的存在会产生新的能级受体水平(E A)(P型半导体)和供体水平(E D)(N型半导体),如图所示。这些杂质水平位于材料的带隙内。特定波长的光辐射可能是由于带间隙内的电子杂质水平或到这些杂质水平的结果所吸收的。4.6。电荷注入和辐射重组电子和孔可以以多种方式注入传导和价带中。光入射在材料上和光子的吸收上会产生电子孔对。我们还在P-N二极管中使用外部电池偏置也注入电子和孔。电子和孔将彼此重新组合,而导带中的电子将返回到价带。可以在两个过程中进行此重组过程。它们是(i)辐射过程和(ii)非辐射过程。在辐射过程中,E-H对重组和光子发出。这是光子吸收过程的倒数。电子孔对也可以重组而不会发光。相反,它们可能会发出(i)热量或(ii)光子或(iii)长波长光子与光子一起发出。这样的过程是非辐射过程。当电子和孔被泵入半导体中时,它们通过自发发射过程重组。此过程不需要光子来进行光子发射过程。自发重组率对于电子和光电设备都非常重要。载体注射的类型(i)少数载体注射,如果N >> P和样品大量掺杂的N型重组率与孔密度成正比。因此,重组率与少数载体密度成正比(孔中的孔)(ii)强注射

4。材料的光学特性

4。材料的光学特性PDF文件第1页

4。材料的光学特性PDF文件第2页

4。材料的光学特性PDF文件第3页

4。材料的光学特性PDF文件第4页

4。材料的光学特性PDF文件第5页

相关文件推荐

2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥2.0
2023 年
¥1.0
1900 年
¥1.0
2021 年
¥1.0
2021 年
¥3.0
2023 年
¥1.0
2022 年
¥1.0
2020 年
¥1.0
2022 年
¥2.0
2022 年
¥1.0
2021 年
¥1.0
2025 年
¥1.0
2025 年
¥1.0
2025 年
¥1.0
2020 年
¥1.0
2020 年
¥2.0
2022 年
¥1.0
2019 年
¥2.0
2024 年
¥8.0
2025 年
¥7.0
2024 年
¥5.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0