生成的对抗网络(GAN)由于能够捕获复杂的高维数据分布而无需广泛的标签,因此近年来受到了极大的关注。自2014年的受孕以来,已经提出了各种各样的GAN变体,其中包含替代体系结构,优化器和损失功能,目的是提高性能和训练稳定性。本手稿着重于量化GAN结构对特定图像降解模式的弹性。我们进行系统的实验,以经验确定10个基本图像降解模式的影响,该模式应用于训练图像数据集,对条件深度卷积GAN(CDCGAN)产生的图像的Fréchet距离(FID)。我们在𝛼 = 0处找到。05水平,亮度,变暗和模糊在统计学上比完全删除降级数据的统计学意义更大,而其他降解通常可以安全地保留在训练数据集中。此外,我们发现,在随机部分遮挡的情况下,所得的GAN图像的FID接近降级训练集的闭塞水平,这令人惊讶的是,GAN FID的性能等于训练集的75%下降。
主要关键词