[3],ATK [4],Quantum Espresso [5,6],EPW [7],Per-Turbo [8])并稳步增加硬件资源。对于单位细胞中有大量原子的系统,例如共价有机框架(COFS)[9],使用AB ITIBL方法仍然具有挑战性。尤其是在需要对许多此类材料进行高通量筛选的情况下,需要替代方法。密度的功能紧密结合(DFTB)[10]是一种方法,因为它有效地降低了密度功能理论(DFT)的复杂性,将Kohn – Sham方程式施加到紧密结合形式中。该方法现在富含扩展[11],并已成功地用于研究各种材料的电子和结构特性。一个非详尽的列表包括有机聚合物,COF [12]和生物分子系统[13],过渡金属氧化物(Tio 2 [14],Zno [15]),MOS 2膜和纳米结构[16],Gra-Phene缺陷[17]和Allotropes。它专门用于研究几种无机材料(Si,SiC,Ag,au,Fe,Mg,Mg)的纳米颗粒和纳米棒的结构和电子,对于DFT计算,其大小不可行。Green的DFTB功能扩展已用于研究弹道性纳米结构中的电子和声子传输[18]。在这项贡献中,我们关注放松时间近似中的Boltzmann转移理论。为此,我们首先从一般的非正交紧密结合的汉顿(Ham-iLtonian)开始得出电子 - 音波耦合的表达。因此,我们的结果适用于DFTB和其他
主要关键词