Loading...
机构名称:
¥ 1.0

将上转换纳米颗粒(UCNP)的尺寸减少到几nm,从而产生了包含很少数量的发射器的发光材料。考虑到一个前所未有的平台,考虑一个粒子超级UCNP的底部限制,以研究Upconversion发光时发挥作用的不同能量传输的贡献。尽管发射离子数量有限,并且高表面与体积的比例仍需要合适的粒子结构,但仍能保持可检测的发射。na(gd-yb)f 4:TM 3 +发射的亚sub-3 nm直径𝜷-相位UCNP是使用富含gadolinium的成分的原位混合前体和微波高温循环序列制备的,从而允许精确控制粒度和分散性。这些核心涂有NAGDF 4惰性壳,以最大程度地减少表面淬火的有害影响(SQ)。时间分辨的发光测量结果结合了YB 3 +敏化器的标准NIR激发和TM 3 +激活剂的直接UV激发,以量化交叉松弛和表面淬火过程。通过优化的合成途径对每个粒子的活化剂数量进行了调整,同时使用适当的激发方案,可以对这些模型纳米粒子中的不同机制进行准确的分析,并表征核心壳结构的结构。

sub -3 nm ...

sub -3 nm ...PDF文件第1页

sub -3 nm ...PDF文件第2页

sub -3 nm ...PDF文件第3页

sub -3 nm ...PDF文件第4页

sub -3 nm ...PDF文件第5页

相关文件推荐

2025 年

...

¥8.0
2025 年
¥1.0
2023 年
¥1.0
2025 年
¥1.0
2025 年

...

¥7.0
2015 年

...

¥1.0
2018 年
¥1.0
2024 年

...

¥31.0
2013 年

...

¥4.0
2021 年
¥3.0
2024 年
¥3.0
2024 年

...

¥5.0
2021 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2020 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年

...

¥7.0
2021 年

...

¥21.0
2024 年

...

¥1.0
2024 年
¥1.0
2022 年
¥1.0
2020 年

...

¥1.0
2020 年
¥4.0
2025 年
¥2.0
2024 年
¥1.0
2025 年

...

¥1.0
2025 年
¥1.0