摘要在射频指纹识别中,根据其模拟缺陷来识别传输无线电信号的设备。尽管传统上通过构建模型和识别信号中的特征来执行识别,但最终的状态通常依赖于机器学习。在数据驱动的技术中,机器学习模型提取了信号的功能,并将它们进行相应的分类。神经网络(NN)是机器学习分类器中的一种流行选择。射频信号本质上是复杂的值,因此通常适当地将复杂的值得值的操作应用于它们。更准确地说,应适当的方法用于与真实和虚部相关的非圆形信号。同相正交(IQ)不平衡是一种信号障碍,可导致信号中的非圆形性。在本主论文中,分别在两个不同的神经网络的帮助下研究了射频指纹分类,分别使用了实用值或复杂的信号处理。使用智商效果的非圆形射频指纹数据模拟用于分类。检查了两个神经网络的性能的差异,以及它们在可训练参数的数量方面的稳健性,即NN的大小和训练数据的大小。基于结果,在对非圆形射频指纹信号进行分类时,复杂值的神经网络在分类时具有鲁棒性,因为当NN大小变化时,它们在分类准确性方面显示出较小的变化。另一方面,实值神经网络的分类精度高度取决于NN的大小。因此,建议使用复杂值的神经网络来分类非圆形射频指纹数据。
主要关键词