背景:尚未探索机器学习(ML)提高医学专业委员会效率的潜力。,我们应用了无监督的ML来确定美国家庭医学委员会(ABFM)外交官之间的原型,以了解其实践特征和参与持续认证的动机,然后检查动机模式与关键的重新获得胜任结果之间的关联。方法:对2017年至2021年ABFM家庭医学持续认证考试调查的外交官选择了选择继续认证的动机。我们使用卡方检验来检查外交官的差异比例失败,因为他们的第一次再认证考试尝试都认可了维持证书的不同动机。无监督的ML技术用于生成具有相似实践特征和重新认证动机的医师群。控制医师人口统计学变量,我们使用逻辑回归来检查动机簇对再认证检查成功的影响,并通过与以前创建的专家开发的分类模式进行了验证。结果:ML簇在很大程度上概括了专家先前设计的固有/外在框架。然而,识别的群集将外交官更加平等地分配到同类群体中。在ML和人类群中,主要是外部或混合动机的医生的检查失败率低于那些本质上动机的医生。(J Am Board Fam Med 2024; 37:279–289。)讨论:这项研究证明了使用ML补充和增强人类对董事会认证数据的解释的可行性。我们讨论了这项示威研究对专业委员会与医师外交官之间的相互作用的影响。
主要关键词