Loading...
机构名称:
¥ 1.0

从邮政服务到自动化表单处理的应用程序。本文介绍了用于HCR的各种方法的比较研究,强调了传统和深度学习方法。传统技术,例如K-Nearest邻居(K-NN),支持向量机(SVM)和人工神经网络(ANN),将其与现代深度学习体系结构(如卷积神经网络(CNN))进行了比较。该研究研究了这些方法的效率,准确性和复杂性,重点是在识别不同数据集中手写字符时的性能。关键挑战,例如在图像中的手写样式,噪声和扭曲的变化。此外,要提高识别率,强调预处理技术的重要性,例如归一化,二进制和提取特征提取。研究结果表明,尽管传统方法对于具有最小的变化的较小数据集有效,但深度学习模型,尤其是CNN,在大型复杂数据集上的准确性和概括方面表现跑得跑得跑得跑得跑得跑得卓越。本文通过讨论将多个模型和使用混合技术相结合的未来潜力来进一步改进HCR系统的结合。

基于机器学习的手写字符识别

基于机器学习的手写字符识别PDF文件第1页

基于机器学习的手写字符识别PDF文件第2页

基于机器学习的手写字符识别PDF文件第3页

基于机器学习的手写字符识别PDF文件第4页

基于机器学习的手写字符识别PDF文件第5页