摘要 - 路径规划模块是自动驾驶汽车导航的关键模块,它直接影响其操作效率和安全性。在具有许多障碍的复杂环境中,传统的计划算法通常无法满足智力的需求,这可能会导致诸如无人车辆中的死区之类的问题。本文提出了一种基于DDQN的路径计划算法,并将其与优先的体验重播方法相结合,以解决传统路径计划算法通常属于死区的问题。一系列的仿真实验结果证明,基于DDQN的路径计划算法在速度和准确性方面明显优于其他方法,尤其是在极端环境中突破死区的能力。研究表明,基于DDQN的路径计划算法在路径质量和安全性方面表现良好。这些研究结果为自动驾驶自动导航的研究提供了重要的参考。