摘要。目的。发作间期癫痫样放电 (IED) 发生在两次癫痫发作之间。IED 主要通过颅内记录捕获,通常在头皮上不可见。本研究提出了一种基于张量分解的模型,将头皮脑电图 (sEEG) 的时频 (TF) 特征映射到颅内脑电图 (iEEG) 的 TF 特征,以便以高灵敏度检测头皮上的 IED。方法。采用连续小波变换提取 TF 特征。将来自 iEEG 记录的 IED 段的时间、频率和通道模式连接成四向张量。采用 Tucker 和 CANDECOMP/PARAFAC 分解技术将张量分解为时间、频谱、空间和节段因子。最后,将来自头皮记录的 IED 和非 IED 段的 TF 特征投影到时间分量上进行分类。主要结果。模型性能通过两种不同的方法获得:受试者内和受试者间分类方法。我们提出的方法与其他四种方法进行了比较,即基于张量的空间分量分析方法、基于 TF 的方法、线性回归映射模型以及非对称对称自动编码器映射模型,然后是卷积神经网络。我们提出的方法在受试者内和受试者间分类方法中均优于所有这些方法,分别实现了 84.2% 和 72.6% 的准确率。意义。研究结果表明,将 sEEG 映射到 iEEG 可提高基于头皮的 IED 检测模型的性能。此外,基于张量的映射模型优于基于自动编码器和回归的映射模型。
1 南开大学人工智能学院,天津 300350,中国;2 斯科尔科沃科学技术学院,莫斯科 121205,俄罗斯;3 杭州电子科技大学计算机学院,杭州 310018,中国;4 哥白尼大学信息学系,托伦 87-100,波兰;5 波兰科学院系统研究所,华沙 01-447,波兰;6 南开大学计算机学院,天津 300350,中国;7 阿根廷射电天文学研究所 IAR-CCT 拉普拉塔,CONICET / CIC-PBA / UNLP,Villa Elisa 1894,阿根廷;8 日本理化学研究所信息系统与网络安全总部计算工程应用部,和光市 351-0106,日本; 9 英国剑桥大学精神病学系,剑桥 CB2 8AH;10 西班牙加泰罗尼亚维多利亚中央大学数据与信号处理研究组,加泰罗尼亚 08500
动机:结合疗法已成为一种有力的治疗方式,以克服耐药性并提高治疗效果。然而,随着个人药物的数量,可能的药物组合数量的增加非常迅速,这使得在实践中无法进行全面的实验性筛查。机器学习模型提供了时间和成本良好的手段来帮助这一过程,以优先考虑最有效的药物组合,以进一步进行临床前和临床验证。然而,多种药物剂量和不同细胞环境中潜在相互作用模式的复杂性对药物组合效应的预测建模构成了挑战。结果:我们介绍了学习复杂的,高度时间柔性的方法,用于描述各种剂量和癌细胞膜的治疗剂组合的响应。该方法基于通过强大潜在张量重建的多项式回归。它结合了推荐的系统式功能,在不同上下文中索引响应值的数据张量以及化学和多摩s特征作为输入。我们证明,在预测性能和运行时间方面,Comboltr优于最先进的方法,并且即使在具有挑战性和实用的推理场景中也会产生高度准确的结果,在没有任何可用的组合和单层响应响应测量中,可以预测所有剂量 - 反应矩阵,并且在任何训练细胞系中都可以进行全新药物组合。可用性和实现:Comboltr代码可在https://github.com/aalto-ics-kepaco/comboltr上找到。联系人:tianduanyi.wang@aalto。fin或juho.rousu@aalto。补充信息:补充数据可在BreioNformatics Online获得。
动机:结合疗法已成为一种有力的治疗方式,以克服耐药性并提高治疗效果。然而,随着个人药物的数量,可能的药物组合数量的增加非常迅速,这使得在实践中无法进行全面的实验性筛查。机器学习模型提供了时间和成本良好的手段来帮助这一过程,以优先考虑最有效的药物组合,以进一步进行临床前和临床验证。然而,多种药物剂量和不同细胞环境中潜在相互作用模式的复杂性对药物组合效应的预测建模构成了挑战。结果:我们介绍了学习复杂的,高度时间柔性的方法,用于描述各种剂量和癌细胞膜的治疗剂组合的响应。该方法基于通过强大潜在张量重建的多项式回归。它结合了推荐的系统式功能,在不同上下文中索引响应值的数据张量以及化学和多摩s特征作为输入。我们证明,在预测性能和运行时间方面,Comboltr优于最先进的方法,并且即使在具有挑战性和实用的推理场景中也会产生高度准确的结果,在没有任何可用的组合和单层响应响应测量中,可以预测所有剂量 - 反应矩阵,并且在任何训练细胞系中都可以进行全新药物组合。可用性和实现:Comboltr代码可在https://github.com/aalto-ics-kepaco/comboltr上找到。联系人:tianduanyi.wang@aalto。fin或juho.rousu@aalto。补充信息:补充数据可在BreioNformatics Online获得。
有才华的孩子能够比其他孩子更先进的学习,这可能是由于神经通路的沟通效率的神经生理学差异所致。拓扑特征有助于理解大脑结构与智力之间的相关性。尽管使用MRI进行了数十年的神经科学研究,但基于大脑区域连通性模式的方法受到MRI伪像的限制,因此,这会导致重新审视MRI形态计量特征,目的是使他们直接识别有天赋的儿童而不是使用大脑连接性。但是,带有异常值的小型,高维度的特征数据集使寻找良好的分类模型具有挑战性的任务。为此,提出了一种混合方法,该方法结合了张量的完成和特征选择方法来处理异常值,然后选择不犯罪功能。所提出的方法可以达到93.1%的分类精度,高于其他现有的算法,因此适用于具有监督分类场景中异常值的小型MRI数据集。
我们在这里研究使用量子操作在Quantum网络上执行纯状态的条件,这些量子操作可以通过非零的概率,随机局部操作和经典通信(SLOCC)操作成功。在他们的2010年开创性工作中,Kobayashi等人。展示了如何将任何经典网络编码协议转换为量子网络编码协议。但是,无论是否存在量子网络编码协议的存在是否可能存在经典的存在。通过此问题提出的动作,我们表征了经典和量子网络的非零概率可实现的一组分配任务。我们开发了一个正式的ISM,该ISM包括将分配任务求解到C或r +中张量的分解来构成两种类型的分配协议。使用这种情况,我们研究了两种类型的分布方案之间的等价和差异,它们在它们之间表现出了几种元素和基本关系,以及收敛和差异的具体示例。我们对先前剩下的问题的负面回答:在量子设置中可以实现某些任务,而在经典设置中则不能实现。我们认为,这种形式主义是研究执行多个分布任务的量子网络能力程度的有用工具。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2021年1月17日发布。 https://doi.org/10.1101/2021.01.14.426756 doi:biorxiv Preprint
我们进行了PubMed搜索,以发现2010年1月至2019年12月之间发表的148篇论文,与人脑,扩散张量成像(DTI)和机器学习(ML)有关。研究着重于健康人群(n = 15),精神健康疾病(n = 25),肿瘤(n = 19),创伤(n = 5),痴呆症(n = 24),发育障碍(n = 5),运动障碍,运动障碍(n = 9),其他神经逻辑疾病(n = 27),不及格疾病(n = 27),不及格疾病,否则不及格; 7),以及上述类别的多种组合(n = 12)。 使用来自DTI信息的信息对患者进行分类是最常见的(n = 114)进行的ML应用。 研究的显着数字(n = 93)使用了支持向量机(SVM)作为分类的ML模型的首选选择。 近年来(2018-2019)出版物的一部分(31/44)继续使用SVM,支持向量回归和随机森林,这些森林是传统ML的一部分。 尽管进行了各种健康状况(包括健康)的许多类型的应用,但大多数研究都是基于小的同胞(小于100),并且没有对测试集进行独立/外部验证。研究着重于健康人群(n = 15),精神健康疾病(n = 25),肿瘤(n = 19),创伤(n = 5),痴呆症(n = 24),发育障碍(n = 5),运动障碍,运动障碍(n = 9),其他神经逻辑疾病(n = 27),不及格疾病(n = 27),不及格疾病,否则不及格; 7),以及上述类别的多种组合(n = 12)。分类是最常见的(n = 114)进行的ML应用。研究的显着数字(n = 93)使用了支持向量机(SVM)作为分类的ML模型的首选选择。近年来(2018-2019)出版物的一部分(31/44)继续使用SVM,支持向量回归和随机森林,这些森林是传统ML的一部分。尽管进行了各种健康状况(包括健康)的许多类型的应用,但大多数研究都是基于小的同胞(小于100),并且没有对测试集进行独立/外部验证。
非局部性是量子物理学的重要组成部分,是量子状态(例如纠缠)许多引人注目的特征的核心。高度纠缠的量子状态的一个重要类别是Greenberger-Horne-Zeilinger(GHz)状态,它们在各种基于量子的技术中扮演关键角色,并且特别感兴趣地基于噪音量子硬件进行基准测试。一种新型的量子启发的生成模型被称为天生机器,该模型利用量子物理的概率性质,在学习经典数据和量子数据方面取得了巨大的成功。为此,我们研究了训练天生机器在张量网络的两个不同架构上学习GHz状态的任务。我们的结果表明,基于梯度的训练方案对TN BORN机器无法学习GHz状态相干叠加(或平等)的非本地信息。这导致了一个重要的问题,即哪种建筑设计,初始化和优化方案更适合学习隐藏在量子状态中的非本地信息,以及我们是否可以适应量子启发的培训算法以学习此类量子状态。
其中 ρ 是量子态,U ∈ U ( H ) ,φ U 表示每个单调度量张量 G 的等距同构,这是因为在完全正的、保迹映射下必须具有单调性,这代表了经典粗粒化量子版本 [ 35 , 40 ]。从无穷大的角度来看,作用量φ可以用 S + 上的基本矢量场来描述,从而提供了酉群李代数 u ( H ) 的反表示。这些矢量场用 X b 表示,其中 b 是 H 上的埃尔米特算子(有关更多信息,请参见第 2 节),对于所有单调度量张量来说,它们都是 Killing 矢量场,因为 U ( H ) 通过等距同构起作用。现在,李代数 u ( H ) 是 H 上有界线性算子空间 B ( H ) 的李子代数,具有由线性算子之间的交换子 [· , ·] 给出的李积。特别地,可以证明 B ( H )(具有 [· , ·] )同构于 U ( H ) 复数化的李代数,即 H 上由可逆线性算子组成的李群 GL ( H ) 的李代数。此外,已知 [ 9 , 15 , 26 , 27 ] GL ( H ) 作用于流形 S + ,更一般地作用于整个量子态空间 S ,根据