快速傅里叶变换 (FFT) 是 20 世纪最成功的数值算法之一,在计算科学和工程的许多分支中得到了广泛的应用。FFT 算法可以从离散傅里叶变换 (DFT) 矩阵的特定矩阵分解中推导出来。在本文中,我们表明,量子傅里叶变换 (QFT) 可以通过进一步将 FFT 矩阵分解的对角因子分解为具有 Kronecker 积结构的矩阵的乘积来推导出来。我们分析了这种 Kronecker 积结构对经典计算机上秩为 1 张量的离散傅里叶变换的影响。我们还解释了为什么这种结构可以利用一个重要的量子计算机特性,使 QFT 算法在量子计算机上的加速比经典计算机上的 FFT 算法快得多。此外,还建立了 DFT 矩阵的矩阵分解与量子电路之间的联系。我们还讨论了基数 2 QFT 分解到基数 d QFT 分解的自然扩展。无需具备量子计算方面的先验知识即可理解本文所介绍的内容。然而,我们相信本文可能有助于读者从矩阵计算的角度对量子计算的本质有基本的了解。
主要关键词