摘要:在教育行业,人工智能通过改变学习方式带来了革命。学习变得更加个性化,对学习者来说也更加方便。人工智能有望通过不同的个性化应用对教育产生创新影响。每个学生将通过人工智能代理获得更多的学习时间。人工智能可以改变学习者的学习方式和招聘流程。人工智能可以使学习和招聘流程自动化,从而使结果更加具体、准确和快捷。本文分析了人工智能对学习者、机构和招聘人员的影响。本研究将研究人工智能给教学、教育机构和招聘带来的变化。本文探讨了人工智能对教育和招聘带来的挑战。本研究将为学习者、机构和招聘人员提供有见地的信息,并为学术体系建设提供详细的知识。 关键词:人工智能、人工智能代理、教育机构、招聘、个性化应用 1.引言 人工智能在教育行业发挥着重要作用。它对教育机构、学生、教师有帮助,也有助于校园招聘。人工智能使机器能够收集、存储、分类、管理和分析从各种来源收到的数据。这些数据可用于多种用途,从提供常见问题的解决方案到根据学生的需求为他们创建教程。教育机构始终需要强大的数据分析和预测分析工具来协助他们开展各种学术和管理活动。人工智能在很大程度上填补了这一空白。另一方面,学生在获取完成学习所需的课程和笔记方面面临问题。人工智能为学生提供了各种平台,以便轻松访问课程和学习材料。它让他们能够轻松舒适地访问所需的学习材料,也帮助他们按照自己的节奏完成学习。人工智能改变了教育系统对教师和学生的工作方式。2. 文献综述 Wilton WT Fok 等人 (2018) 提出了一种基于深度学习并使用 TensorFlow 引擎开发的模型。该模型通过分析学生的学术和非学术参数对他们进行分类,以预测他们的学位课程。关联规则和决策树技术主要用于预测。该模型使用了 2000 名学生的数据,准确率在 80% 到 91% 之间。Anbukarasi V 和 A. John Martin (2019) 使用 Weka 工具在数据集上应用了九种机器学习程序。从 1100 名学生那里收集数据来建立和测试该模型。本文得出结论,与剩余算法相比,J48、RF、贝叶斯网络和 REPTree 算法的准确度最高。Navyashree SL 等人 (2019) 对多种机器学习技术进行了比较研究,以预测安置情况。本研究使用了来自安置部门的二手数据。在研究了各种类型的监督、无监督、强化机器学习技术之后,作者得出结论:SVM 和贝叶斯信念网络是最佳的安置预测算法。Mehdi Mohammadi 等人 (2019) 使用 KNN、决策树和朴素贝叶斯数据挖掘算法来预测学生的表现。决策树、KNN 和朴素贝叶斯学习程序应用于数据集。KNN 的准确率为 0.5464%。决策树的准确率为 0.5325%。朴素贝叶斯算法的准确率为 0.4616%。作者得出结论,与其他两种预测学生 GPA 的算法相比,KNN 算法具有最好的准确度。
主要关键词