Loading...
机构名称:
¥ 2.0

摘要 反言论通过挑战仇恨肇事者和支持受辱骂者,直接反驳仇恨言论。它通过贡献更多积极的在线言论,而不是试图通过删除来减轻有害内容,为内容审核和去平台化等更具争议性的措施提供了一种有希望的替代方案。大型语言模型开发的进步意味着,通过自动化生成反言论,可以提高反言论的生成效率,从而实现大规模的在线活动。然而,我们目前缺乏对反言论缓解仇恨效果的几个重要因素的系统理解,例如哪些类型的反言论最有效,实施的最佳条件是什么,以及它能最好地改善仇恨的哪些具体影响。本文旨在通过系统地回顾社会科学中的反言论研究,并将方法和发现与自然语言处理 (NLP) 和计算机科学在自动反言论生成方面的努力进行比较,来填补这一空白。通过这种多学科视角,我们确定了两个领域未来的光明方向。

理解反言论以减轻网络伤害

理解反言论以减轻网络伤害PDF文件第1页

理解反言论以减轻网络伤害PDF文件第2页

理解反言论以减轻网络伤害PDF文件第3页

理解反言论以减轻网络伤害PDF文件第4页

理解反言论以减轻网络伤害PDF文件第5页