摘要:肌电图 (EMG) 在识别缺血性中风引起的神经肌肉改变方面具有宝贵的肌电表现,可作为诊断缺血引起的步态障碍的潜在标记。本研究旨在开发一个可解释的机器学习 (ML) 框架,通过可解释的人工智能 (XAI) 技术区分中风患者和健康个体的肌电模式。该研究包括 48 名在康复中心接受治疗的中风患者(平均年龄 70.6 岁,65% 为男性),以及 75 名健康成年人(平均年龄 76.3 岁,32% 为男性)作为对照组。在步态实验室的室内地面行走期间,从放置在双下肢股二头肌和外侧腓肠肌上的可穿戴设备记录 EMG 信号。我们部署了 Boosting ML 技术,利用 EMG 步态特征识别中风相关的步态障碍。此外,我们还采用了 XAI 技术,例如 Shapley 加法解释 (SHAP)、局部可解释模型不可知解释 (LIME) 和 Anchors,以解释 EMG 变量在中风预测模型中的作用。在评估的 ML 模型中,GBoost 模型在与训练数据集进行交叉验证时表现出最高的分类性能 (AUROC:0.94),并且在使用测试 EMG 数据集进行评估时也表现出色 (AUROC:0.92,准确率:85.26%)。通过 SHAP 和 LIME 分析,研究发现有助于区分中风组和对照组的 EMG 频谱特征与右侧股二头肌和外侧腓肠肌有关。这种可解释的基于 EMG 的中风预测模型有望成为预测中风后步态障碍的客观工具。它的潜在应用可以通过提供可靠的 EMG 生物标志物极大地帮助管理中风后康复,并解决缺血性中风患者的潜在步态障碍。
主要关键词