Loading...
机构名称:
¥ 2.0

经典物理学(如果不是我们自己的直觉概念)认为现实是“自始至终”客观确定的。但量子力学表明,量子层面的现实可能是客观或本体论上不确定的(而不仅仅是主观或认识论上不确定的)。由于我们似乎缺乏关于客观不确定性的“清晰而明确的想法”,因此我们需要任何可能的帮助,无论来自何处,以建立这些直觉。本文的目的是通过得出数学哲学中的抽象与量子力学(QM)中的叠加和客观不确定性概念之间的一些有趣且可能具有启发性的类比来寻求帮助。此外,提出了一种抽象(或范式)的数学模型,并用它来给出有限概率论中的一种新型“叠加事件”。抽象原理的一个著名例子是弗雷格的“方向原理”,斯图尔特·夏皮罗将其描述为:对某域中的任何直线 l 1 和 l 2 ,“当且仅当 l 1 平行于 l 2 时,l 1 的方向与 l 2 的方向相同。”[12,第 107 页] 抽象将等价转化为恒等。但有两种不同的方法可以将这种等价(即平行)转化为恒等。俗话说“勤奋的数学家”经常使用的一种版本被称为 1 号抽象,即等价类。如果 [ l ] 是直线 l 的平行等价类,则显然满足等价恒等原理:[ l 1 ] = [ l 2 ] i¤ l 1 ' l 2 (其中 ' 是平行的等价关系)。但是,我们也可以称之为第二种抽象,其中“l 的方向”是一种抽象,它捕捉平行线的共同点,并抽象出它们之间的不同点。本文的目的是:

关于数学中的抽象性和不确定性......

关于数学中的抽象性和不确定性......PDF文件第1页

关于数学中的抽象性和不确定性......PDF文件第2页

关于数学中的抽象性和不确定性......PDF文件第3页

关于数学中的抽象性和不确定性......PDF文件第4页

关于数学中的抽象性和不确定性......PDF文件第5页