原理:代谢的协同重编程主导神经母细胞瘤 (NB) 的进展。基于阐明代谢重编程的分子机制,开发一种具有分层指导的 NB 治疗选择的个性化风险预测方法具有重要的临床意义。方法:利用基于机器学习的多步骤程序,在单细胞和代谢物通量维度上阐明代谢重编程驱动的 NB 恶性进展的协同机制。随后,开发了一种有前景的代谢重编程相关预后特征 (MPS) 和基于 MPS 分层的个性化治疗方法,并使用临床前模型进一步独立验证。结果:MPS 鉴定的 MPS-I NB 表现出比 MPS-II 对应物明显更高的代谢重编程活性。 MPS 在预测预后方面比目前的临床特征 [AUC:0.915 vs. 0.657(MYCN)、0.713(INSS 分期)和 0.808(INRG 分层)] 表现出更高的准确性。AZD7762 和依托泊苷分别被确定为针对 MPS-I 和 II NB 的有效治疗药物。后续生物学测试表明,AZD7762 显著抑制 MPS-I NB 细胞的生长、迁移和侵袭,且效果优于 MPS-II 细胞。相反,依托泊苷对 MPS-II NB 细胞的治疗效果更好。更令人鼓舞的是,AZD7762 和依托泊苷分别显着抑制了 MPS-I 和 MPS-II 样本中的体内皮下肿瘤形成、增殖和肺转移;从而延长了荷瘤小鼠的生存期。从机制上看,AZD7762 和依托泊苷分别通过线粒体依赖性途径诱导 MPS-I 和 MPS-II 细胞凋亡;而 MPS-I NB 通过依赖谷氨酸代谢和乙酰辅酶 A 抵抗依托泊苷诱导的细胞凋亡。MPS-I NB 进展受到多种代谢重编程驱动因素的推动,包括多药耐药性、免疫抑制和促肿瘤炎症微环境。从免疫学上看,MPS-I NB 通过 MIF 和 THBS 信号通路抑制免疫细胞。代谢方面,重编程的谷氨酸代谢、三羧酸循环、尿素循环等显著支持了 MPS-I NB 细胞的恶性增殖。此外,MPS-I NB 细胞表现出独特的促肿瘤发育谱系和自我通讯模式,这表现为随着发育和自我通讯而激活的致癌信号通路增强。结论:本研究深入了解了代谢重编程介导的 NB 恶性进展的分子机制。它还为开发以新的精确风险预测方法为指导的靶向药物提供了启示,这可能有助于显著改善 NB 的治疗策略。
主要关键词





