课程运输电气化的概述,其中包括汽车和航空航天需要高效率并更好地控制的电动驱动器。 永久磁铁同步电动机(PMSM)具有高功率密度,结构简单,高功率因数和小尺寸,使其非常适合电动汽车的牵引力。 汽车和航空航天中新兴应用的急剧要求要求进一步优化PMSM的电磁设计。 有限元分析(FEA)是一种工具,有助于设计优化高性能的电机(例如PMSMS)。 它也可以用来预测和了解永久磁铁同步电动机(PMSM)在各种物理条件下的行为。 在最近的过去,为控制PMSM的控制而开发了许多方法。 面向场的控制(FOC)和直接扭矩控制(DTC)是用于PMSM的两种主要控制方法。 由于数字信号处理领域的进步,已经有可能实现非线性控制方案(例如模型预测性控制(MPC))。 尽管具有预先控制的PMSM驱动器具有巨大的运输电气化潜力,但仍需要进一步的研究和知识库创建,以将现有的应用程序思想发展为可靠,具有成本效益的功能性产品。 对电气工程专业学生的PMSM设计和控制方法的强大基本知识对于提高运输电气化至关重要。 课程的主要目标如下:课程运输电气化的概述,其中包括汽车和航空航天需要高效率并更好地控制的电动驱动器。永久磁铁同步电动机(PMSM)具有高功率密度,结构简单,高功率因数和小尺寸,使其非常适合电动汽车的牵引力。汽车和航空航天中新兴应用的急剧要求要求进一步优化PMSM的电磁设计。有限元分析(FEA)是一种工具,有助于设计优化高性能的电机(例如PMSMS)。它也可以用来预测和了解永久磁铁同步电动机(PMSM)在各种物理条件下的行为。在最近的过去,为控制PMSM的控制而开发了许多方法。面向场的控制(FOC)和直接扭矩控制(DTC)是用于PMSM的两种主要控制方法。由于数字信号处理领域的进步,已经有可能实现非线性控制方案(例如模型预测性控制(MPC))。尽管具有预先控制的PMSM驱动器具有巨大的运输电气化潜力,但仍需要进一步的研究和知识库创建,以将现有的应用程序思想发展为可靠,具有成本效益的功能性产品。对电气工程专业学生的PMSM设计和控制方法的强大基本知识对于提高运输电气化至关重要。课程的主要目标如下:本Gian课程的目的是在工程师和研究学者中创建如此知识基础和意识。
主要关键词