Loading...
机构名称:
¥ 8.0

量化riemann表面S的Teichmüller空间的量化是3维量子重力的一种方法,并且是群集品种的原型典范。s中的任何简单循环都会产生自然的单片函数i。/在Teichmüller空间上。对于S的任何理想三角剖分,此功能i。/是在弧形的凸起的剪切坐标的平方根中的lurent多项式。一个重要的问题是构建此功能的量化i。/,即用量子变量中的非共同劳伦多项式代替它。这个问题与物理学中的框架受保护的旋转特征密切相关,已通过Allegretti和Kim使用Bonahon和Wong的SKEIN代数SL 2量子痕迹解决,以及使用Gaiotto,Moore和Neitzke的Seiberg的Seiberg -Witter -Witter -Witter -Witten Curves,Spectral网络,光谱网络以及Writhes of Writhes的Gaiotto,Moore和Neitzke的Gaiotto。我们表明,量化问题的这两种解决方案一致。我们增强了Gabella的解决方案,并表明它是Bonahon -Wong量子痕迹的扭曲。

代数和几何拓扑

代数和几何拓扑PDF文件第1页

代数和几何拓扑PDF文件第2页

代数和几何拓扑PDF文件第3页

代数和几何拓扑PDF文件第4页

代数和几何拓扑PDF文件第5页