基于调整的迅速研究,由于其效率和有希望的能力,近年来引起了人们的关注。只需几个样本即可实现自然语言处理(NLP)任务的最佳性能,至关重要的是要包含尽可能多的信息样本并避免误导性的样本。但是,在迅速调整文献方面没有工作解决了与模型培训中错误样本不同的硬性样本的问题,这是由于缺乏有关样品质量来培训训练良好模型的质量的监督信号所致。我们提出了一个名为“硬性样本意识到及时调查”(硬)的框架,以通过重新学习在硬样品识别中解决非差异的概率,并通过适应性对比学习方法加强了特征空间的折衷,而无需更改原始数据分布。对一系列NLP任务的广泛研究,在几次射击场景中表现出了硬化的能力。HardPT obtains new state-of-the-art results on all evaluated NLP tasks, including pushing the SST-5 accuracy to 49.5% (1.1% point absolute improvement), QNLI accuracy to 74.6% (1.9% absolute improvement), NMLI accuracy to 71.5 (0.7% absolute improvement), TACREV F 1 -score to 28.2 (1.0 absolute im- provement), and I2B2/VA F 1-分为41.2(1.3绝对改进)。
主要关键词