网页:https://computerscience.aceter.ac.uk/people/profile/profile/index.php?username = gad212项目详细信息:计算机模型或模拟器在各种科学学科中都起着至关重要的作用,包括工程,公共健康,公共健康,空中流量,以及空中控制(ATC)。这些模拟器通常昂贵且耗时运行,依靠参数的准确校准来进行可靠的预测。但是,用于校准的传统高斯工艺(GPS)在处理大型输入数量和多个输出时表现出局限性,通常需要不切实际的简化假设。我们正在寻找一个高技能和积极进取的候选人,以开创性的博士学位项目,旨在通过开发一个通用,基于深度学习的模型校准框架来克服这些局限性。利用基于神经网络的方法在处理输入和输出维度方面的可伸缩性,该项目探讨了有效的深度学习替代模型的构建。重点将放在量化预测中固有的不确定性,并将这种不确定性整合到校准过程中。此外,该项目将研究可逆神经网络和生成模型的应用,以直接输入采样与目标输出对齐。该框架的主要应用在于空中交通管制系统的领域,在该系统中,精确校准昂贵的模拟至关重要。改进的模型校准将提高交通管理预测的可靠性,从而有助于更安全,更明智的决策。该项目的预期可交付成果包括著名科学期刊的高影响力出版物以及开发开源软件套件,该套件封装了我们的创新方法。
主要关键词