我们回顾了从理论上处理宇称时间 (PT) 对称非厄米量子多体系统的方法。它们被实现为具有 PT 对称性并与环境相容的耦合的开放量子系统。PT 对称非厄米量子系统表现出各种迷人的特性,使它们在一般的开放系统中脱颖而出。后者的研究在量子理论中有着悠久的历史。这些研究基于组合系统-储层装置的厄米性,由原子、分子和光学物理学以及凝聚态物理学界开发。数学物理学界对 PT 对称非厄米系统的兴趣导致了新的视角和 PT 对称和双正交量子力学优雅数学形式主义的发展,这些形式主义不涉及环境。在数学物理研究中,重点主要放在哈密顿量的显着光谱特性和相应单粒子本征态的特征上。尽管哈密顿量不是厄米量的,但它们可以显示所有特征值都是实数的参数区域。然而,为了研究凝聚态物理中出现的量子多体现象并与实验取得联系,人们需要研究可观测量和关联函数的期望值。此外,人们必须研究统计集合而不仅仅是特征态。凝聚态界部分人士采用 PT 对称和双正交量子力学的概念,导致该方法论处于争议之中。对于一些基本问题,例如,什么是适当的可观测量,如何计算期望值,什么是充分的平衡统计集合及其相应的密度矩阵,人们并没有达成共识。随着工程和控制开放量子多体系统的技术进步,现在是时候将厄米量与 PT 对称和双正交观点相协调了。我们全面回顾了不同的方法,包括伪厄米性的过度思想。为了激发我们在这里宣传的厄米观点,我们主要关注辅助方法。它允许将非厄米系统嵌入到更大的厄米系统中。与其他技术(例如主方程)相比,它不依赖于任何近似值。我们讨论了 PT 对称和双正交量子力学的特性。在这些中,被认为是可观测量的东西取决于哈密顿量或选定的(双正交)基。此外,至关重要的是,被称为“期望值”的东西缺乏直接的概率解释,而被视为正则密度矩阵的东西是非平稳和非厄米的。此外,时间演化的非幺正性隐藏在形式主义中。我们选取了几个模型哈密顿量,到目前为止,这些模型要么是从厄米角度研究的,要么是从 PT 对称和双正交角度研究的,并在各自的替代框架内研究它们。这包括一个简单的两级单粒子问题,但也包括显示量子临界行为的多体晶格模型。比较这两种计算的结果,可以发现厄米方法虽然在某些方面很笨拙,但总能得出物理上合理的结果。在极少数情况下,如果可以与实验数据进行比较,它们还会一致。相比之下,数学上优雅的 PT 对称和双正交方法得出的结果在一定程度上难以物理解释。因此,我们得出结论,厄米方法应该是
主要关键词