图 1:阿尔茨海默病各年龄段分布 2. 文献综述 阿尔茨海默病可被提前发现,通过对 MRI 扫描进行图像处理可以预测患病的可能性。 “在图像处理技术中,多种算法用于提取灰质和白质,包括 k 均值聚类、强度调整和区域提取算法”。使用相同算法计算物质中灰质和白质的近似比例。用于临床文献分析和定量分析的工具是 MATLAB,该分析是针对不同视角的脑部 MRI 图像进行的。 “图像处理是一种使用不同算法从图像中提取感兴趣区域的技术。不同的算法包括分水岭、阈值和 K 均值聚类方法。所述分割方法用于分割 X 射线焊接图像,以检测穿孔和减少缺陷、不完全穿透和虫洞等缺陷。该方法用于识别故障区域。它们广泛应用于医学成像。计算机视觉、光学字符识别、工业射线照相术 [3]。 K-Means 算法是广泛使用的聚类算法之一。本文介绍了一种改进的 K-Means 算法。该算法通过首先对图像应用部分拉伸来提高图像质量。主观聚类用于生成聚类的初始中心,主观聚类是一种为数据点生成可能值的方法。生成的中心可供图像分割算法使用 [4]。深度学习架构已被提出用于检测阿尔茨海默病,这可以克服用于检测的机器学习算法的不足。它可用于检测轻度认知障碍和 AD。我们提供了一种深度学习架构,它使用自动编码器堆栈和输出级 SoftMax 来检测 AD 和 MCI 前身的阶段”。该架构领域可以使用先验知识来检测和分析几类学习样本和学习样本
主要关键词