摘要 - 将前进算法纳入神经网络训练中代表了从传统方法的变革转变,引入了一种双向机制,该机制通过绕过派生式传播的复杂性来简化学习过程。此方法以其简单性和效率而闻名,并涉及执行两个正向通行证 - 第一个具有实际数据以促进积极的强化,第二个具有合成产生的负数据以实现不犯罪性学习。我们的实验证实,前进算法不仅是实验新颖性,而且是一种可行的训练策略,它与常规的多层感知器(MLP)架构竞争。为了克服传统显着性技术固有的局限性,主要依赖于基于梯度的方法,我们开发了一种专门针对前向前框架的定制显着算法。这种创新算法增强了对特征重要性和网络决策的直观理解,从而清楚地可视化数据中最大程度地影响模型预测。通过利用这种规定的显着性方法,我们可以更深入地了解该模型的内部运作,从而显着增强了我们的解释能力,而不是标准方法提供的能力。使用MNIST和时尚MNIST数据集,我们的评估表明我们的方法与传统的基于MLP的模型相当。索引术语 - 前向算法,显着性,MLP
主要关键词