临床内分泌学领域以及医疗保健,正面临着新技术的变革性变化,尤其是人工智能(AI)。AI有望大大改善我们筛选,诊断,治疗,监测和教练患者的方式(1,2)。AI工具不仅会使内分泌决策的流程更快,更可靠,因此AI的使用为针对个人患者特征量身定制的个性化治疗计划开辟了道路(3,4)。AI是涵盖机器学习(ML)的计算机科学领域。ml使用旨在做出预测或分类的数学算法。这些模型通常在已知的,标记的数据集上进行训练,并迭代地增强,以获得对看不见的数据进行准确预测的能力(5)。深度学习(DL)是ML的一个子集,使用模仿人类中枢神经系统的复杂模型。dl需要使用人工神经网络(ANN)。ANN由互连层组成,这些图层通过最小化误差(6)来传递信息并优化预测。一旦受过培训,ANN可以处理庞大而复杂的数据集,以执行预测,分类,甚至更高级的应用程序等任务,例如大型语言模型(LLMS),计算机视觉和多媒体生成,从文本输入(7-9)中生成。我们预计AI会造成临床内分泌学的前所未有的破坏。尽管如此,大多数临床医生一方面缺乏对临床AI潜力的正确理解,另一方面,缺点和警告。对AI基础的平衡理解必须最大化其利益。因此,医疗保健提供者必须熟悉这项新技术,但也必须了解其局限性。表1概述了基于AI的工具与临床内分泌学中常规方法之间的差异。本文的目的是概述AI在临床内分泌学和糖尿病领域中的潜在和未来方向。
主要关键词