摘要 预测学生的解决问题策略是一个复杂的问题,但它会对自动教学系统产生重大影响,因为它们可以根据学习者的情况调整或个性化系统。虽然对于小型数据集,学习专家可能能够手动分析数据来推断学生的策略,但对于大型数据集,这种方法是不可行的。我们开发了一个机器学习模型来根据学生数据预测策略。虽然基于深度神经网络 (DNN) 的方法(例如 LSTM)可以应用于此任务,但它们对于大型数据集通常具有较长的收敛时间,并且与其他几种基于 DNN 的方法一样,存在数据过度拟合的固有问题。为了解决这些问题,我们开发了一种用于策略预测的神经符号方法,即结合符号 AI(可以编码领域知识)和 DNN 的优势的模型。具体来说,我们使用马尔可夫逻辑对数据中的关系进行编码,并利用这些关系之间的对称性来更有效地训练 LSTM。具体来说,我们使用重要性抽样方法,对训练数据进行抽样,以便对于对称实例的群集/组(策略可能对称的实例),我们仅选择代表性样本来训练模型,而不是使用整个组。此外,由于某些组可能包含比其他组更多样化的策略,我们会根据先前观察到的样本调整重要性权重。通过对 KDD EDM 挑战数据集进行实证评估,我们展示了我们方法的可扩展性。
主要关键词