脑瘤是最危险和最具破坏性的疾病之一。晚期脑癌的死亡率更高。此外,脑瘤的误诊会产生危险并降低患者的生存机会。脑瘤的早期诊断有助于通过提供正确的治疗来挽救患者的生命。磁共振成像 (MRI) 和计算机断层扫描 (CT) 等计算机辅助医学成像技术有助于诊断疾病。因此,近年来,脑 MRI 分类成为一个活跃的研究领域。早期已经提出了许多用于 MRI 分类的方法,从经典方法到先进的深度学习 (DL) 算法,例如卷积神经网络 (CNN)。传统的机器学习 (ML) 技术需要手工制作的特征,而 CNN 通过卷积和池化层的参数调整直接从未处理的图像中提取特征来进行分类。使用 CNN 算法的特征提取主要受训练过程图像大小的影响。如果训练数据集大小较小,CNN 模型在某个时期后会过度拟合。因此,迁移学习技术得到了发展。在所提出的系统中,使用五种迁移学习架构(例如 AlexNet、Vgg16、ResNet18、ResNet50 和 GoogLeNet)进行五项研究,将脑 MRI 的临床数据集分类为良性和恶性。在脑 MRI 上应用数据增强技术来推广结果并减少过度拟合的可能性。在这个提出的系统中,经过微调的 AlexNet 架构分别实现了最高的精度、召回率和 f 测量值 0.937、1 和 0.96774。
主要关键词