系统神经科学旨在了解遍布大脑的神经元网络如何介导计算任务。识别这些网络的一种流行方法是首先计算来自多个大脑区域的神经活动测量值(例如功率谱),然后将线性因子模型应用于这些测量值。至关重要的是,尽管大脑区域之间的定向通信在神经计算中发挥着既定的作用,但定向通信的测量值很少用于网络估计,因为它们与线性因子模型方法的隐式假设不相容。在这里,我们开发了一种新的定向通信频谱测量,称为定向谱 (DS)。我们证明它与线性因子模型的隐式假设兼容,并提供了一种估计 DS 的方法。我们证明,与现有替代方案相比,DS 测量的潜在线性因子模型可以更好地捕捉模拟和真实神经记录数据中的底层大脑网络。因此,定向谱的线性因子模型为神经科学家提供了一种简单有效的方法来明确模拟神经群体网络中的定向通信。
主要关键词