Loading...
机构名称:
¥ 1.0

摘要 由于量子计算和机器学习的计算和概率性质相似,因此产生了使用量子方法优化学习过程的想法。既有全新的算法,如 HHL,也有量子改进的算法:QPCA、QSVM。在本文中,我们将逐步研究 QSVM 算法,从第 2 节中描述的基础开始,逐步深入研究算法的组成。因此,在了解基础知识之后,我们将考虑量子相位估计(HHL 算法的一部分),然后考虑 QSVM 算法(HHL 是其组成部分)。我们还将考虑 QPCA 算法,该算法可在 QSVM 算法之前应用,以降低数据样本的维度。通过这种方式,我们探索了经典算法与其量子对应算法之间的根本区别。我们还在实践中实现了 QSVM 方法,并将获得的实际结果与理论进行了比较。结果,我们在 72 维数据样本上获得了比传统 SVM (83%) 更高的准确率 (100%)。然而,我们发现量子设备上的学习时间远非理想(这种大小的样本可能需要 5 分钟)。这项研究旨在从理论上论证或反驳关于量子计算对机器学习算法效率的假设。研究对象是量子计算机的编程。研究主题是研究用于实现机器学习问题的量子计算机制。研究结果是一个软件模块,可以评估量子计算机上分类任务的效率。它还可用于比较从经典和量子设备获得的结果。研究方法:量子计算基础的理论分析:叠加和纠缠原理、线性代数、复数概率论;建立一个量子比特和多量子比特系统的模型;研究量子机器学习算法的工作原理及其复杂性;对量子机器学习方法与经典方法进行实证比较。

使用量子机器学习机制解决分类问题

使用量子机器学习机制解决分类问题PDF文件第1页

使用量子机器学习机制解决分类问题PDF文件第2页

使用量子机器学习机制解决分类问题PDF文件第3页

使用量子机器学习机制解决分类问题PDF文件第4页

使用量子机器学习机制解决分类问题PDF文件第5页

相关文件推荐

2020 年
¥1.0
2020 年
¥1.0
2024 年
¥1.0