Loading...
机构名称:
¥ 19.0

在这项工作中,我们开发了统计方法,根据患者的重复测量结果对疾病进展进行建模,重点关注帕金森病 (PD)。一个关键挑战在于 PD 患者之间存在固有的异质性,以至于现在怀疑 PD 包含多种亚型或运动表型。为了深入了解疾病进展,研究建议在多个时间点为每个患者收集广泛的标记物测量值。这些数据允许通过统计建模研究疾病的进展模式。在第一部分中,我们模拟了 PD 标量标记物的进展。我们扩展了疾病进展模型,即纵向时空模型。然后,我们提出解决数据缺失问题,并对不同性质的标记物的联合进展进行建模,例如临床评分和从成像模式中提取的标量测量。通过这种方法,我们模拟了 PD 的早期运动进展,并在第二项研究中模拟了特发性 PD 进展的异质性,重点关注睡眠症状。在论文的第二部分,即独立的部分,我们处理了医学图像的纵向建模。对于这些高维数据,深度学习通常被使用,但主要是在横断面设置中,忽略了可能的内部动态。我们建议利用深度学习作为降维工具来构建疾病进展的时空坐标系。我们首先利用这种灵活性来处理多模态数据。然后,我们利用假设随时间单调性而产生的自我监督,为建模时间变异性提供更高的灵活性。

帕金森病的进展模型

帕金森病的进展模型PDF文件第1页

帕金森病的进展模型PDF文件第2页

帕金森病的进展模型PDF文件第3页

帕金森病的进展模型PDF文件第4页

帕金森病的进展模型PDF文件第5页

相关文件推荐