电子隧穿屏障所花的时间问题对于纳米间隙器件[1-6]来说越来越重要,例如纳米天线(其场发射发生在 50 纳米[7]到 8 纳米[8]的阳极-阴极(AK)间隙上(其中阳极-阴极渡越时间[9]在飞秒量级))和阿秒实验[10-12]。在对薄绝缘层隧穿效应进行后续研究中,Hartman[13]和更早的McColl[14]使用入射波包遇到矩形屏障的模型发现,金属-绝缘体-金属(MIM)薄膜的传输时间由大屏障宽度极限下的群延迟τg=¯h/√μ给出,其中μ是费米能级,是真空功函数:对于一般情况,当μ==1eV时,τg=0.65821fs,顺便说一下,它小于但与Büttiker和Landauer[15]的屏障宽度相关的半经典时间τsc=L/√2/m=1相当。对于 L = 1 nm,约为 6860 fs,但 Winful [16,17] 证明,τ g 是停留时间 τ d 和自干扰时间 τ i 之和,性质截然不同。我们使用时间相关维格纳分布函数 (WDF) 方法 [18] 研究了波包与屏障的相互作用,结果表明,矩形屏障(以及具有类似突变行为的其他屏障)具有一些特性,使得它们用于波包模拟存在问题,即使平面波和指数增长/衰减的 so-
主要关键词