Loading...
机构名称:
¥ 1.0

摘要 — 在经典计算机上模拟量子电路是一项众所周知的难题,但对于量子算法的开发和测试来说,这项任务却越来越重要。为了减轻这种固有的复杂性,人们提出了高效的数据结构和方法,如张量网络和决策图。然而,它们的效率在很大程度上取决于执行单个计算的顺序。对于张量网络,顺序由所谓的收缩计划定义,并且已经开发了大量方法来确定合适的计划。另一方面,到目前为止,基于决策图的模拟大多以直接的方式(即顺序方式)进行。在这项工作中,我们研究了使用决策图模拟量子电路时所选择路径的重要性,并从概念和实验上表明,选择正确的模拟路径会对使用决策图的经典模拟的效率产生巨大影响。我们提出了一个开源框架(可在 github.com/cda-tum/ddsim 上找到),它不仅可以研究专用的模拟路径,还可以重用现有发现,例如从确定张量网络的收缩计划中获得的发现。实验评估表明,与现有技术相比,从张量网络领域翻译策略可能会产生几个倍的速度提升。此外,我们设计了一个专用的模拟路径启发式方法,可以进一步提高性能——通常可以产生几个数量级的速度提升。最后,我们对可以从张量网络中学到什么和不能学到什么进行了广泛的讨论。

使用决策图进行量子电路模拟的模拟路径

使用决策图进行量子电路模拟的模拟路径PDF文件第1页

使用决策图进行量子电路模拟的模拟路径PDF文件第2页

使用决策图进行量子电路模拟的模拟路径PDF文件第3页

使用决策图进行量子电路模拟的模拟路径PDF文件第4页

使用决策图进行量子电路模拟的模拟路径PDF文件第5页

相关文件推荐