Loading...
机构名称:
¥ 5.0

本研究集中于同时移动的非合作量子博弈。其中一部分显然不是新的,但为了自洽起见,将其包括在内,因为它致力于介绍相关主题的数学和物理基础,以及如何将简单的经典博弈修改为量子博弈(此过程称为经典博弈的量化)。简要强调了博弈论与信息科学之间的联系,并揭示了量子纠缠的作用(在量子博弈论中起着核心作用)。利用这些工具,我们研究了一些基本概念,例如纯策略和混合策略纳什均衡的存在(或不存在)及其与纠缠程度的关系。本研究的主要结果如下:1)基于最佳响应函数法构建数值算法,旨在寻找量子博弈中的纯策略纳什均衡。该形式化方法基于将连续变量离散化为点的网格,可应用于基于最佳反应函数法的双人双策略经典博弈中的量子博弈。2)应用该算法研究纯策略纳什均衡的存在与否与纠缠度(由连续参数γ指定)的关系问题。结果表明,当经典博弈GC存在非帕累托有效的纯策略纳什均衡时,具有最大纠缠度(2γ=π)的量子博弈GQ不存在纯策略纳什均衡。通过研究非对称囚徒困境博弈,发现存在一个临界值02γ<<πc,使得当γγ<c时,存在纯策略纳什均衡

量子游戏专题

量子游戏专题PDF文件第1页

量子游戏专题PDF文件第2页

量子游戏专题PDF文件第3页

量子游戏专题PDF文件第4页

量子游戏专题PDF文件第5页