Loading...
机构名称:
¥ 1.0

通过添加太阳能和风能等可再生能源、先进的计量基础设施和储能系统,传统电网正在变成智能电网。为了防止智能电网的不经济运行并提高可再生资源的渗透率,需求响应 (DR) 方法对于降低峰值负荷和度过临界条件至关重要。在此背景下,本研究提出了一种关于 DR 的交流最优潮流 (AC-OPF) 问题的多目标优化。所提出的基于需求响应的 OPF 方法的新颖之处在于通过有功和无功功率同时参与 DR 来降低系统成本,考虑智能电网中交流网络和各种可再生能源的物理约束,并通过使用深度学习方法基于先前数据进行需求预测来提高计算精度。最后,使用 TOPSIS 法,根据多目标优化确定最佳 DR 值。使用改进的 IEEE 24 节点测试系统验证了所提出方法的有效性和弹性。结果表明,最优需求响应(20%)不仅实现了有功和无功功率的削峰填谷,而且使总电压偏差和系统成本最小化。

太阳能研究杂志(JSER)

太阳能研究杂志(JSER)PDF文件第1页

太阳能研究杂志(JSER)PDF文件第2页

太阳能研究杂志(JSER)PDF文件第3页

太阳能研究杂志(JSER)PDF文件第4页

太阳能研究杂志(JSER)PDF文件第5页