Loading...
机构名称:
¥ 2.0

在描述早期数学干预对儿童结果的影响时,研究人员通常依赖评估中正确答案的比例。在这里,我们建议将重点转移到问题解决策略的相对复杂程度上,并为有兴趣研究策略的研究人员提供方法指导。我们利用来自幼儿园样本的随机教学实验的数据,该实验的详细信息在 Clements 等人 (2020) 中概述。首先,我们描述我们的问题解决策略数据,包括如何以易于分析的方式对策略进行编码。其次,我们探索哪些类型的序数统计模型最符合算术策略的性质,描述每个模型对问题解决行为的暗示,以及如何解释模型参数。第三,我们讨论“治疗”的效果,将其操作化为与算术学习轨迹 (LT) 相一致的教学。我们表明,算术策略的发展最好被描述为一个连续的逐步过程,并且接受 LT 教学的儿童在后评估中使用更复杂的策略,相对于在针对目标的技能条件下的同龄人。我们引入潜在策略复杂性作为与传统 Rasch 因子分数类似的指标,并证明它们之间存在中等相关性(r = 0.58)。我们的研究表明,策略复杂性所包含的信息与传统的基于正确性的 Rasch 分数不同,但与之互补,这促使其在干预研究中得到更广泛的使用。

分析策略复杂程度的序数模型

分析策略复杂程度的序数模型PDF文件第1页

分析策略复杂程度的序数模型PDF文件第2页

分析策略复杂程度的序数模型PDF文件第3页

分析策略复杂程度的序数模型PDF文件第4页

分析策略复杂程度的序数模型PDF文件第5页

相关文件推荐

2022 年
¥1.0
2020 年
¥1.0