预测多方对话中的转变对于提高口语对话系统的可用性和自然流程至关重要,从而为对话剂提供了实质性的增强。我们提出了一种基于窗口的新方法,可以通过利用尖端预训练的语言模型(PLM)和经常性的神经网络(RNN)的能力来实时进行实时的转变末端。我们的方法将Distilbert语言模型与封闭式复发单元(GRU)融合在一起,以在线方式准确预测转弯点。我们的AP-PRACH可以显着胜过基于常规的临时单元(IPU)的预测方法,这些方法通常忽略了在动态对话中重叠和中断的细微差别。这项研究的潜在应用很重要,尤其是在虚拟药物和人类机器人相互作用的领域。我们可以促进我们准确的在线预测模型,以增强这些应用程序中的用户体验,从而使它们更自然,无缝整合到现实世界中的对话中。
主要关键词