[C1] Agrawal T.,Balazia M.,Bremond f。:CM3T:高效多模式学习的框架,用于非病会议出版物基因交互数据集。IEEE/CVF冬季有关计算机视觉应用(WACV)的冬季会议,美国图森,2025年。[C2] Sinha S.,Balazia M.,Bremond f。:通过优化的聚合网络识别教法性白内障手术视频中的手术器械。IEEE图像处理应用和系统(IPA)的国际会议,法国里昂,2025年。[C3] Muller P.,Balazia M.,Baur T.,Dietz M.,Heimerl A.,Penzkofer A.,Schiller D.,Bremond F.,Alexandersson J.,Andre E.ACM多媒体(ACMMM),澳大利亚墨尔本,2024年。[C4] Strizhkova V.,Kachmar H.,Chaptoukaev H.,Kalandadze R.,Kukhilava N.,Tsmindashvili T.,Abo-Alzahab N.,Zuluaga M.A.:MVP:基于视频和生理信号的多模式情绪识别。在IEEE/CVF欧洲计算机愿景会议(ECCV),意大利米兰的IEEE/CVF欧洲/CVF上的情感行为分析(ABAW),2024年。[C5] Reka A.,Borza D.L.,Reilly D.,Balazia M.,Bremond F。:将门控和上下文引入时间动作检测。在IEEE/CVF欧洲计算机愿景会议(ECCV),意大利米兰的IEEE/CVF欧洲/CVF上的情感行为分析(ABAW),2024年。[C6] Tiwari U.,Majhi S.,Balazia M.,Bremond f。:自动驾驶异常检测至关重要的是:弱监督的地平线。ACM多媒体(ACMMM),第9640-9645页,加拿大渥太华,2023年。在IEEE/CVF欧洲计算机视觉会议(ECCV),意大利米兰,2024年,IEEE/CVF欧洲计算机视觉会议(ECCV)举行的自动驾驶(漫游)的强大,分发和多模式模型。[C7] Muller P.,Balazia M.,Baur T.,Dietz M.,Heimerl A.,Schiller D.,Guermal M.,Thomas D.,Bremond F.,Alexander-Sson J.,Andre E.,Andre E.[C8] Agrawal T.,Balazia M.,Muller P.,Bremond F。:多模式视觉变压器,强迫注意行为分析。IEEE/CVF计算机视觉应用(WACV)的冬季会议,第3392–3402页,美国威克罗阿,美国,2023年。[C9] Balazia M.,Muller P.,Tanczos A.L.,Liechtenstein A.,Bremond F。:社会互动的身体行为:新颖的注释和最新评估。ACM多媒体国际会议(ACMMM),第70-79页,里斯本,葡萄牙,2022年。[C10] Balazia M.,Hlavackova-Schindler K.,Sojka P.,Plant C。:Granger Causal-Ity的可解释步态识别。IEEE/IAPR国际模式认可会议(ICPR),第1069-1075页,加拿大蒙特利尔,2022年。[C11] Agrawal T.,Agarwal D.,Balazia M.,Sinha N.,Bremond f。:使用跨意识变压器和行为编码的多模式人格识别。IAPR国际视觉理论与应用会议(VISAPP),第501-508页,Virtual,2022。[C12] Sinha N.,Balazia M.,Bremond f。:火焰:面部地标热图激活的多模式凝视。IEEE国际高级视频和信号监视会议(AVSS),第1-8页,虚拟,2021年。[C13] Balazia M.,Happy S.L.,Bremond F.,Dantcheva A。:面部多么独特:一项调查研究。IEEE/IAPR国际模式识别会议(ICPR),第7066-7071页,意大利米兰,2021年。[C14] Balazia M.,Sarkar s。:在活动对象跟踪中重新调用评估。在神经信息处理系统会议上(NEURIPS),加拿大温哥华,2019年的神经信息处理系统(NEURIPS)的新知识(NEWINML)。[C15] Aakur S.,Sawyer D.,Balazia M.,Sarkar S。:对未修剪监视视频中基于建议的细粒度活动检测方法的检查。NIST关于TREC视频检索评估(TRECVID)的研讨会,《扩展视频挑战的活动》,美国盖瑟斯堡,2018年。[C16] Balazia M.,Sojka p。:您是走路的方式:不合作的MOCAP步态识别视频监视,并使用不完整和嘈杂的数据。IEEE/IAPR国际生物识别技术联合会议(IJCB),第208-215页,美国丹佛,2017年。 [C17] Balazia M.,Sojka p。:用于基于MOCAP的步态识别方法的评估框架和数据库。 IAPR关于模式识别可再现研究(RRPR)的研讨会,第33-47页,墨西哥坎昆,2016年。 [C18] Balazia M.,Sojka p。:通过最大保证金标准(扩展摘要)学习健壮的步态识别功能。 IAPR关于结构和句法模式识别(SSPR)和统计技术的国际国际研讨会(SPR),第585-586页,墨西哥梅里达,2016年。 [C19] Balazia M.,Sojka p。:与运动捕获数据相关的步态识别的独立特征。IEEE/IAPR国际生物识别技术联合会议(IJCB),第208-215页,美国丹佛,2017年。[C17] Balazia M.,Sojka p。:用于基于MOCAP的步态识别方法的评估框架和数据库。IAPR关于模式识别可再现研究(RRPR)的研讨会,第33-47页,墨西哥坎昆,2016年。[C18] Balazia M.,Sojka p。:通过最大保证金标准(扩展摘要)学习健壮的步态识别功能。IAPR关于结构和句法模式识别(SSPR)和统计技术的国际国际研讨会(SPR),第585-586页,墨西哥梅里达,2016年。[C19] Balazia M.,Sojka p。:与运动捕获数据相关的步态识别的独立特征。IAPR关于结构和句法模式识别(SSPR)和统计技术的国际国际研讨会(SPR),第310-321页,墨西哥,墨西哥,2016年。[C20] Balazia M.,Sojka p。:通过最大余量标准学习适合步态识别的功能。IEEE/IAPR国际模式识别会议(ICPR),第901-906页,墨西哥坎昆,2016年。[C21] Balazia M.,Sedmidubsky J.,Zezula P。:语义上一致的人类运动分割。国际数据库和专家系统应用程序(DEXA),第423-437页,德国慕尼黑,2014年。[C22] Sedmidubsky J.,Valcik J.,Balazia M.,Zezula p。:基于归一化步行周期的步态识别。国际视觉计算研讨会(ISVC),第11-20页,Rethymno,希腊,2012年。[C23] Valcik J.,Sedmidubsky J.,Balazia M.,Zezula P.,确定人类识别的行走周期。太平洋亚洲情报与安全信息学讲习班(PAISI),第127-135页,马来西亚吉隆坡,2012年。
主要关键词



