摘要:在海上研究以及搜索和救援操作中,建立或预测漂流物体的轨迹很重要。可以使用带有海洋动态模型的传统工具或通过人工智能模型来确定漂移对象的轨迹。从2003年12月19日至12月28日之间收集的漂流浮标数据中,研究小组采用了CNN(CORV1D)模型进行分析。分析结果表明,通过使用ADAM优化器,Huber损耗函数和256个过滤器,在隐藏层中,该模型性能的特征参数被确定为RMSE = 0.04004,MAE = 0.032304度,R²= 98%。使用SGD优化器和均方误差(MSE)损耗函数时,与先前情况相比,RMSE和MAE值最多降低了四倍,而R²值则在隐藏层中有64个过滤器达到99.9%。当隐藏层中的过滤器数增加到128时,CNN(CORV1D)模型的性能提高了20%,RMSE = 0.007863DEG,MAE = 0.006653DEG。使用CNN(Conv1D)模型使用SGD优化器预测漂移浮标的轨迹时,R²值和MSE损耗函数接近约100%,这表明该模型适用于预测漂流浮标轨迹的输入数据。将模型隐藏层中的过滤器数量从128增加到256并没有改变模型的预测性能,这表明该情况的最佳过滤器数为128。未来的工作应继续使用较大的输入数据集进行漂移数据分析。但是,这项研究中获得的RMSE结果仍然相对较大(0.87 km),这可能是由于输入数据有限。
主要关键词