抽象的先前功能磁共振成像(fMRI)研究表明,前运动和顶脑区域的活性具有即将到来的抓地力强度。但是,尚不清楚如何在电动机执行之前最初表示有关预期的握力强度的信息,然后随后将其转换为电机代码。在这项fMRI研究中,我们使用多毒素模式分析(MVPA)来解码有关抓地力强度的信息以及何时在大脑中参数编码的有关抓地力强度的信息。 人类参与者执行了延迟的抓地力任务,其中在工作记忆(WM)中,必须在工作记忆(WM)中维持四个提示的握力强度之一,这是在9-S延迟到达前的电动机执行之前。 使用探照灯方法和支持向量回归的时间分辨MVPA,我们测试了哪些大脑区域显示出预期的握力强度的多元WM代码。 在早期延迟期间,我们观察到在腹侧额叶前皮层(VMPFC)中进行了高度的解码。 在晚期延迟期间,我们发现了一个动作特异性大脑区域的网络,包括双侧腔内沟(IPS),左背前皮层(L-PMD)和补充运动区域。 此外,还采用了交叉回归解码来测试早期和晚期延迟期之间激活模式的时间概括,并在提示表现和电动机执行过程中使用这些分解。 交叉回归解码表明在VMPFC中对提示周期的时间概括以及L-IPS和L-PMD中的运动执行。在这项fMRI研究中,我们使用多毒素模式分析(MVPA)来解码有关抓地力强度的信息以及何时在大脑中参数编码的有关抓地力强度的信息。人类参与者执行了延迟的抓地力任务,其中在工作记忆(WM)中,必须在工作记忆(WM)中维持四个提示的握力强度之一,这是在9-S延迟到达前的电动机执行之前。使用探照灯方法和支持向量回归的时间分辨MVPA,我们测试了哪些大脑区域显示出预期的握力强度的多元WM代码。在早期延迟期间,我们观察到在腹侧额叶前皮层(VMPFC)中进行了高度的解码。在晚期延迟期间,我们发现了一个动作特异性大脑区域的网络,包括双侧腔内沟(IPS),左背前皮层(L-PMD)和补充运动区域。此外,还采用了交叉回归解码来测试早期和晚期延迟期之间激活模式的时间概括,并在提示表现和电动机执行过程中使用这些分解。交叉回归解码表明在VMPFC中对提示周期的时间概括以及L-IPS和L-PMD中的运动执行。一起,这些发现表明,抓地力强度的WM表示会发生转换,其中VMPFC编码有关预期的握力的信息,后来在执行前将其转换为L-PIP和L-PMD中的电机代码。
主要关键词