Loading...
机构名称:
¥ 1.0

广泛采用电动汽车(EV)取决于可靠有效的电池管理系统的开发。一个关键的挑战在于确保整个车辆寿命中的电池健康,安全性和最佳性能。传统方法通常依赖于预定的维护或发生故障后的反应措施。本文介绍了一种新颖的方法 - 一种AI驱动的机器学习(ML)框架 - 用于主动电动电动电动电池健康管理。我们建议的系统解决了三个关键方面:实时故障检测,持续的健康监测以及剩余的使用寿命(RUL)锂离子电池的预测。该框架利用电池管理系统(BMS)的丰富数据流,包括电压,电流,温度和细胞健康参数。通过采用高级ML算法,系统可以实时分析此数据,以识别偏离正常工作模式的异常。这可以尽早发现潜在的电池故障,以防止安全危害和性能退化。此外,本文探讨了回归或深度学习技术在RUL预测中的应用。这允许主动维护计划,优化资源分配以及由于意外的电池故障而最大程度地减少停机时间。该框架不断学习和适应累积数据的能力可确保准确性和可靠性的持续提高。本文提出了对电动汽车中智能电池管理的重大进步。我们将深入研究拟议的ML框架,详细介绍其功能,以进行故障检测,健康监测和RUL预测。将提出实验结果和性能指标,以验证我们方法的有效性。最后,我们将讨论该AI驱动系统对EV电池健康管理未来的潜在影响及其对更可靠和可持续的运输环境的贡献。除了对单个车主的直接利益外,该AI驱动的电池管理系统的广泛实施还具有对更广泛的社会和环境影响的巨大希望。通过提高电动汽车电池的寿命和效率,该技术可以显着降低与电池制造和处置相关的环境足迹。通过主动维护延长锂离子电池的寿命不仅可以保存宝贵的资源,还可以减轻电池生产的环境影响,这涉及有限的原材料和能源密集型制造工艺。

自动除颤器对心脏患者的远程监控-IJRPR

自动除颤器对心脏患者的远程监控-IJRPRPDF文件第1页

自动除颤器对心脏患者的远程监控-IJRPRPDF文件第2页

自动除颤器对心脏患者的远程监控-IJRPRPDF文件第3页

自动除颤器对心脏患者的远程监控-IJRPRPDF文件第4页

自动除颤器对心脏患者的远程监控-IJRPRPDF文件第5页

相关文件推荐