摘要 - 她的算法有效地使用量子计算机解决了保理和离散对数问题,并弥补了当今使用的所有公共密钥方案。这些方案依赖于对其计算复杂性的假设,量子计算机可以很容易地绕过。这些解决方案必须来自新算法(称为量词后加密(PQC))或新方法,例如量子密钥分布(QKD)。前者复制了经典公共密钥算法的计算安全思想,而后者则复发以使用自然的量子特性,这也带来了数学安全证明,可能提供信息理论安全性。为了确保将来的数据,我们必须采用这些范式。随着量子计算进步的速度,在未来十年内向量子安全加密的过渡至关重要。延迟可能会揭示长期寿命的机密数据,因为当前的加密可能会在其价值到期之前损坏。但是,这种转变必须平衡采用新技术和维护经过验证的系统以防止当前和未来威胁。在这项工作中,我们选择了运输层安全性,这是最广泛使用的协议之一,作为构成经典,量子和量词后加密的基础,以适合在软件定义的网络中进行广泛采用的方式,这是用于部署集成量子型网络的最灵活的网络范式。为此,我们将标准用于QKD密钥提取和SDN集成。使用部署的生产基础架构证明了这种方法的性能。目的实现基于最新版本的TLS,并演示了高级功能,例如在大型QKD网络上进行重新键和密钥运输,同时支持加密稳定性并通过使用密码套件来保持向后兼容性。
主要关键词