深度学习(DL)已被证明在检测不断发展的复杂恶意软件方面具有有效性。,尽管深度学习减轻了功能工程问题,从而找到了最佳的DL模型的体系结构和一组超参数,但仍然是一个需要领域专业知识的挑战。此外,许多提出的最新模型非常复杂,可能不是不同数据集的最佳选择。一种有希望的方法,即自动化机器学习(AUTOML),可以通过自动化ML管道密钥组件(即超参数优化和神经架构搜索(NAS))来减少开发自定义DL模型所需的域专业知识。Automl减少了设计DL模型所涉及的人类反复试验的数量,在最近的实现中,可以找到具有相对较低计算开销的新模型体系结构。对使用汽车进行恶意软件检测的可行性的研究非常有限。这项工作提供了全面的分析和有关将AUTOML用于静态和在线恶意软件检测的见解。对于静态,我们的分析是在两个广泛使用的恶意软件数据集上进行的:Sorel-20m,以在大型数据集上演示效率;和Ember-2018,这是一个较小的数据集,该数据集特定于策划,以阻碍机器学习模型的性能。此外,我们还显示了调整NAS过程参数的效果,以在这些静态分析数据集中找到更佳的恶意软件检测模型。此外,我们还证明了Automl是在线恶意软件检测方案中使用卷积神经网络(CNN)的云IAAS的表现。我们使用新生成的在线恶意软件数据集将AutoML技术与六个现有的最先进的CNN进行了比较,而在恶意软件执行期间,有或没有其他应用程序在后台运行。我们表明,与最先进的CNN相比,汽车技术的性能更高,而在架构上很少有开销。一般而言,我们的实验结果表明,基于汽车的静态和在线恶意软件检测模型的性能比文献中介绍的最先进的模型或手工设计的模型在标准杆上甚至更好。
主要关键词