摘要:在人工智能(AI)和机器学习(ML)技术的迅速发展之后,面部识别技术已成为生物识别领域内的重要研究重点。本文研究了AI和ML算法的最新进步,以提高面部识别的准确性和速度。首先,对面部识别技术的发展进行了全面审查。它可以追溯从传统方法到深度学习技术的应用,同时还总结了现有技术的优点和局限性。随后,本文中使用的关键技术在细致的情况下详细阐述了这些卷积神经网络(CNN),深度学习功能提取,转移学习,以及面部识别中的注意机制。在处理复杂的场景,不同的照明条件和遮挡情况时,这些显着增强了模型的处理能力。此外,本文对隐私保护和道德问题进行了探索,它提出了旨在在不损害身份绩效的情况下增强数据保护和隐私安全的策略。最后,这项研究的主要发现被封装,并概述了未来的研究方向。这项研究不仅为开发面部识别技术提供了理论的基础和实践指导,而且为促进AI技术在社会生活中的广泛应用铺平了道路。这些包括进一步优化算法以减少计算资源的消耗,开发更有效的数据增强技术以增强模型概括,并探索更广泛的应用程序场景,例如智能安全,个性化服务和可访问性辅助系统。
主要关键词