Brunn-Minkowski的不平等是众多几何不平等的一部分,例如等距不平等,Pr´ekopa-Leindler不平等和Borell-Borell-Brascamb-lieb不平等。著名的等法不等式,该不平等是在给定的体积中最小化其表面积的身体是Brunn-Minkowski的球,这是从Brunn-Minkowski接球并让T趋向于零的。pr´ekopa-leindler不等式断言,对于t∈(0,1)和功能f,g,h:r n→r≥0,与H(tx +(1-t)y≥f t(x)≥f t(x)g 1-t(y)的属性相对于所有x,y∈Rn和r f = r g,r g,r g,r g,r h g,r g,f = r h h h所有−x 0)是某些a∈R> 0和x0∈Rn的对数凸函数。pr´ekopa-leindler不平等意味着Brunn-Minkowski将F和G作为A和B的指示函数。borell-brascamb-lieb的不平等现成的pr'ekopa-leindler不平等现象。对这些不平等现象及其稳定性的研究引发了近年来的富有成果的研究领域。Brunn-Minkowski不平等的稳定性说,如果我们接近平等,则这些集合接近凸面和平等(要翻译),目的是量化两个亲密关系(请参见例如[fig14])。关于Brunn-Minkowski不平等的稳定性的主要民俗猜想是,如果我们与平等的因子1+δ属于1+δ,那么从A和B到公共凸组的距离为O n(t-1/2δ1 / 2)。
主要关键词